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A survey is given of the facts and fancies concerning the nonlinear Langevin or 
It6 equation. Actually, it is merely a pre-equation, which becomes an equation 
when an interpretation rule is added. The rules of ItS and Stratonovich differ, 
but both are mathematically consistent and therefore equally admissible conven- 
tions. The reason why they seem to lead to physical differences is that the 
Langevin approach used to arrive at the equation involves a tacit assumption. 
For systems with external noise this assumption can be justified, and it is then 
clear that the Stratonovich rule applies. Systems with internal noise, however, 
can only be properly described by a master equation and the ItS-Stratonovich 
controversy never enters. Afterward one is free to mqdel the resulting fluctua- 
tions either with an ItS or a Stratonovich scheme, but that does not lead to any 
new information. 

KEY WORDS: Fluctuations; stochastic differential equations; Langevin 
approach. 

With the death of Pierre Rrsibois we have lost not only an eminent 
physicist, but also a colleague with an open mind, with whom it was 
possible to discuss any subject without fear that a difference of opinion 
would affect the mutual feelings of friendship. For this reason it may not be 
inappropriate to dedicate to his memory an article that is frankly argumen- 
tative, trusting that the reader will take it in the same vein that he would. 

The subject is the controversy about the proper treatment of stochastic 
differential equations involving white noise. In spite of several expository 
articles, (1'2)'2 the discussion in the physical and chemical literature contin- 
ues and threatens to grow to grotesque proportions. This article is another 

1 Institute for Theoretical Physics of the University at Utrecht, Utrecht, The Netherlands. 
2 Reference 2, however, is more concerned with engineering problems than with physical 

systems. 
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attempt to bring it down to the realm of reason. There is nothing new in it, 
everything has been said before, but I shall say it loudly and, I hope, 
clearly. 

1. Gaussian white noise (or the "Langevin process") is the stationary 
stochastic process l(t) having the following properties: 

(i) (l(t)) = O. 
(ii) (l(tl)l(t2)) -- 8(t I - t2). 
(iii) Higher moments are given by the rules of Gaussian processes. 

That is, odd moments vanish, and even moments are the sum of the terms 
one obtains by breaking them up in all possible ways into a product of 
pairs and applying (ii) to each pair; e.g., 

( l( tl)l( t2)l( t3)l( t4)) 
= a(t,  - ta)a(t 3 - t4) + 6(t, - t3)6(t 2 - t,) + a(t, - t g ) a ( t  2 - t3) 

Alternatively, one may stipulate that all cumulants beyond the second 
vanish3; or that the generating functional is 

(exp[i;_~ook(t)l(t)dt])=exp ( - �89 f ~  [k(t)] 2dt } 

where k(t) is an arbitrary test function. 
The difficulty is that no properly defined stochastic process with these 

properties exists. Gaussian white noise is a singular object, just as the delta 
function is a singular "function." Its integral, however, 

w(t) = fotl(t ') dt' 

is the perfectly respectable Wiener process, which, however, is not station- 
ary and not differentiable. 

For a physicist it is convenient to visualize l(t) as a random sequence 
of small pulses, both positive and negative. One then has to take the limit in 
which these pulses have short duration and small heights, but arrive in a 
dense succession. (The limit exists in the sense that the integral of such a 
succession of pulses tends to the Wiener process; or that its characteristic 
functional tends to the expression given above.) 

2. Our problem concerns the nonlinear Langevin equation 

= f ( x )  + g(x)l(t) (1) 

where f and g are two given functions. For our discussion it is sufficient to 

3 This is probably what is meant by the statement in Ref. 3 that "all correlations higher than 
the second order vanish." 



It6 Versus Stratonovich 177 

consider a single variable x, and an autonomous system, i.e., f and g do not 
involve t explicitly. One often writes instead of (1) 

dx = f ( x )  dt + g(x)  dw(t) 

but of course that does not solve any difficulty) 
First, i f  g does not depend on x, there is no difficulty. Then the equation, 

together with a fixed initial value, 

= f ( x )  + gl(t), x(O) = a (2) 

defines uniquely a stochastic process x(t), t > 0. It is a Markov process, 
and its transition probability P(x,  t I xo, to)dx (from the value x 0 at to into 
the interval x, x + dx at t) obeys the Fokker-Planck equation 

O P _  0 g2 ~2p 
Ot Ox f ( x ) P +  2 0 x  2 (3) 

However, if g does depend on x, the equation (1) as it stands is 
meaningless: the algebraic operations indicated by the symbols cannot be 
carried out. The reason may be understood as follows. According to the 
equation, each pulse in l(t) gives rise to a pulse in 2 and hence a jump in x. 
That has the effect that the value of x to be used in g(x) is undetermined 
(and hence also the size of the jump). 

3. The It6 convention (4) assigns a meaning to (1) by adding, as a 
matter of definition, the rule that in g(x) the value of x just before the pulse 
should be taken. It is then obvious that 

( g ( x ) l ( t ) )  = 0 (4) 

It can be shown (5) that, with this additional convention, (1) together with 
an initial value determines x(t)  as a Markov process, whose transition 
probability obeys 

OP _ 1 0 2 
Ot 0-~ f ( x ) P  + ~ Ox--- 5 { g(x)}2P (5) 

Incidentally, readers who did not feel that (4) was obvious may 
multiply (5) with x and integrate so as to obtain 

Or(X) = ( f ( x ) )  (6) 

and compare this with the average of (1). 
The Stratonovich convention (6) takes for x in g(x) half the sum of the 

values before and after the jump. With this convention the expression (1) 
with initial value defines again a Markov process, but different from the 

4 In this form it is usually called the It~ equation, but  in the present context that name might 
lead to confusion. 
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one defined by (1) with the It6 convention. The transition probability of 
this Markov process is determined by the Fokker-Planck equation 

OP_ 0 1 Ot ax T(x)P + -~ ~ g(x) ~ g(x)P (7a) 

Note that this equation may also be written 

aP _ ~ 1 ~2 
{ f(x) + �89 g(x)g'(x))P + ~ Ox----- 7 { g(x)}2P (7b) Ot Ox 

which exhibits the difference from It6's process. On multiplying (7) with x 
and integrating, one finds that one now has instead of (4) 

( g ( x ) l ( t ) )  = ( g ( x )  g'(x)) (8) 

which does not in general vanish. 
We summarize the situation so far. Although (1) looks like a differential 

equation, it is really a meaningless string of symbols. It does not define a 
stochastic process x(t). 5 Yet this "pre-equation" can be turned into an 
actual equation by supplementing it with an additional interpretation rule. 
Two different rules have been chosen by It6 and Stratonovich, turning it 
into two different equations, defining two different p r o c e s s e s  x ( t ) .  6 It is 
misleading to call (1) an equation until the interpretation rule is added. 
Rather, there are two equations: (lI) and (IS). Since these rules are merely 
a matter of definition, it makes no sense to argue about their being right or 
wrong. 

4. When a physicist encounters an expression like (1) he usually feels 
free to transform it to a new variable ~ = ~(x) so as to obtain 

x = f(Y) + g(YOl(t) (9) 

f(~) = f(x)q;(x) (10a) 

~(~) = g(x)qY(x) (10b) 

However, since (1) is not an equation, this formal transformation cannot 
lead to any conclusion. In particular, there is no reason why the interpreta- 
tion rules applied to the transformed preequation should lead to equations 
that are the transforms of the original equations (lI) and (1S). It happens to 
be true for the Stratonovich rule, but it is not true for the Itd convention. 
Symbolically, 

(1S) -- (1S), (1I) v~ (lI)  (11) 

5 In the following we always suppose the presence of a fixed initial value x(O) = a when not 
mentioned otherwise. 

6 Other interpretation rules could be envisaged, (21) but  they have not been used in physics, 
and are not the subject of this article. 
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The easiest way to see this is by looking at the corresponding Fokker- 
Planck equations. If one transforms (7) to the new variable if, taking into 
account that fi(Y, t) -- P(x,  t ) / r  one finds 

where f and g are indeed related t o f  and g by (10). Hence, if x(t)  is defined 
by (1S), the process ~(t) -- 4(x(t)) is the one defined by (9S). 

However, if one similarly transforms (5) into 

o F _  0 1 o_L 
at ox 2 ( 

one finds instead of (I0) 

/ ( ~ )  = f ( x )e / (x )  + �89 { g(x)  }2eO"(x) (12a) 

~,(~) = g(x)@(x) (12b) 

Hence, if x(t)  is defined by (lI), the process ~(t) is the one defined by (9I) 
with (12) instead of (10). With these new transformation formulas one may 
freely transform the variables in the It6 scheme. (v) The fact that (12) differs 
from the transformation formulas (10), which one expects naively, is no 
valid reason fo r concluding that It6 is wrong. 

5. As an example, take for x the velocity of a Brownian particle. 
According to Langevin, (8) the physics is described by 

2 = - x  + cl(t) (13) 

This is of the form (1), but since g = c is constant, as in (2), no additional 
interpretation convention is needed. Both It6 and Stratonovich lead to the 
same Fokker-Planck equation (3), in this case 

__ C2 02p OP 0 xP + - -  - -  (14) 
0t 0x 2 0x 2 

Now let ff = �89 x 2 be the energy. According to Stratonovich, the trans- 
formed expression (9) is 

x = - 2Y + c (2~) '/2/(t) (15) 

This expression requires an additional interpretation rule, for which one 
must of course take the Stratonovich convention, as the Stratonovich 
transformation rule was used. Thus (15) is equivalent to 

0 f i - 2 ~ - % Y f f +  c2 0 t.-~,/2 0 r 
0t T 0-~ ,x ,  ~ ,x ,  (16) 

This is in fact the transformed form of (14). 
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Alternatively, one may transform (13) according to It6's rules (12), 

x = - 2 f  + �89 2 + c(2f )] /2 l ( t )  (17) 

This equation must then be interpreted according to It6, which leads to 

ap_ 0 (2f_ lc2)F+ c2 fp (18) 
0t Off 2 -2- 0 f  --'-~ 

Clearly this is the same as (16). 
Conclusion: If one starts from the well-defined equation (13), one is 

free to apply nonlinear transformations to the variable following either 
Stratonovich or It6. Of course one must expect incorrect results if one 
mixes both, for instance, by transforming (13) according to Stratonovich 
into (15) and then interpreting (15) according to It6. Such incorrect results 
must not be construed as evidence that It6's interpretation is physically 
wrong. (9) In fact, in this example the physics only entered through (13), 
which is not subject to the controversy; the example merely demonstrates 
that the mathematics is consistent. 

6. When the physical basis itself is not well defined the situation is less 
clear-cut. Before broaching that topic, the following two remarks must be 
made, which are relevant for the physical discussion, but are themselves 
merely mathematics. 

First suppose one has an expression (1) with coefficient functions 
fl ,  g~, and one turns it into an equation by adding the It6 rule: 

:? -- f l (x)  + g l (x ) l ( t )  (I) (19) 

On the other hand, take another expression (1), with coefficients f2, g2, and 
the Stratonovich rule 

Yc = f2(x)  + S2(x) l ( t )  (S) (20) 

Then it is possible to relate f2, g2 to f l ,  g~ in such a way that both equations 
are equivalent, i.e., with the same initial condition they determine the same 
process x(t) .  

The proof again uses the equivalent Fokker-Planck equations. Equa- 
tion (19) defines a Markov process whose transition probability obeys (5) 
with subscripts 1. Similarly, (20) defines a Markov process whose transition 
probability obeys (7) with subscript 2. On comparing (5) with (7b), one sees 
that both equations are the same if one chooses 

g2(x) = g , (x) ,  f2(x)  + i g2(x) g~(x) = f l (x)  (21) 

Thus the difference between the ItO and Stratonovich rules amounts to a 
difference in the choice o f f :  it can always be compensated by an appropri- 
ate modification of the coefficient f. 
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7. The second remark concerns an altogether different kind of stochas- 
tic differential equation, viz. 

x = f ( x )  + g ( x )L ( t )  (22) 

where L(t)  is a given stationary stochastic process with zero mean and 
short, but not infinitely short, autocorrelation time %. The precise form of 
L(t)  does not matter, and it is easy to construct a perfectly respectable, not 
singular, stochastic process having these properties. Hence (22) is a well- 
defined differential equation, which neither requires nor admits additional 
interpretation rules. One may now study the limit %-~ 0 and ask whether 
one gets (lI) or (1S)--or perhaps something else. 

There is one hitch, however, because the solutions of (22) are obviously 
not Markovian. Hence it is not possible to select a solution by fixing its 
initial value at t - - 0 .  The question should therefore be formulated more 
precisely: does the set of solutions of (22) tend to the set of solutions of (lI) 
or (IS)? 

The answer is of course: (IS). For that was the way in which Stra- 
tonovich arrived at his rule in the first place. This answer has repeatedly 
been rederived using either some form of perturbation theory or the theory 
of stochastic differential equations. (1~ It can also be obtained by the 
following simple argument. 

Since L(t)  is a mathematically well-defined stochastic function, one 
may freely transform x by the ordinary rules of calculus, which are the 
same rules (10) that apply to the Stratonovich calculus. Choosing ~'(x) 
= 1/g(x) ,  one obtains 

x = f ( ~ )  + L( t )  

If one now varies L(t)  in such a way as to approach l(t), one obtains in the 
limit an equation of type (2), which is equivalent with (3). Transforming 
back to x, one obtains (1S), since the Stratonovich calculus is invariant for 
(10). 

The conclusion is that (22), in the limit L(t)--> l(t), reduces to (1S). It 
must be emphasized that this is true only when the functions f and g are 
fixed, i.e., they are not altered while the limit is approached. It would also be 
possible to construct a different limiting scenario, in which L ( t ) ~ l ( t ) ,  
while f varies in such a way that in the limit one obtains (1I). That is the 
reason why the limiting property derived in this remark cannot be consid- 
ered as a universal argument in favor of Stratonovich. 

8. Why do these plain mathematical facts create so much confusion 
among physicists and chemists? In particular, how is it possible that two 
equivalent mathematical formulations appear to lead to physically different 



182 van Kampen 

conclusions? The reason is that the customary physical argument by which 
one arrives at (1) involves a tacit assumption, which fixes the function f and 
thereby breaks the equivalence between both formulations. I shall outline 
this argument--to be called "the Langevin approach." 

One has a system whose macroscopic, deterministic equation of mo- 
tion is known to be 

= F(x )  (23) 

One then realizes that, for some reason, fluctuations occur, so that (23) is 
not exact; rather, x fluctuates around the values given by it. To take these 
fluctuations into account, one supplements (23) with a fluctuating term, 
which one assumes to have the same form as in (1) 

-- F (x )  + g (x ) l ( t )  (24) 

The coefficient g(x)  determines the magnitude of the fluctuations and must 
be found from physical considerations. These often indicate that g must 
indeed depend on x. For instance, the fluctuations in the number of 
electrons arriving on an anode will be roughly proportional to the square 
root of that number. 

Having arrived at (24), one realizes that its meaning is not well 
defined, and that an interpretation rule has to be added. The resulting 
process x( t )  depends on the choice of that rule, owing to the fact that one 
has assumed the first term to be identical with the macroscopic law. At this 
point the controversy starts, and various justifications are adduced to 
justify the choice of either It6 or Stratonovich. 

Clearly something went wrong in this Langevin approach. No amount 
of physical intuition and acumen suffices to justify the meaningless string 
of symbols (24). If the physical argument were sound, it ought to lead to an 
equation, that is, to (24), including the required interpretation rule. Accord- 
ing to the remark in Section 6, such an argument must consider at the same 
time the form of the function f. There is no good reason why f shouM be 
identical with the macroscopic F: the only requirement is that the resulting 
equation describes the behavior of x and its fluctuations as they actually 
occur in the system. 

For a sound physical starting point it is indispensable to examine the 
mechanism from which the fluctuations arise in more detail than is done in 
the Langevin approach. In fact, this could have been expected a priori, 
because the fluctuations contain more information about the system than 
the macroscopic equation alone. It so happens that in linear cases, such as 
(13), the only additional information is the constant c, and its value can be 
obtained by confronting the resulting (x2~ with the known equilibrium 
distribution (fluctuation-dissipation theorem). This fact has led to the view 
that for nonlinear cases a similar bare minimum of additional information 
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should suffice, but that is not true. The difficulties and inconsistencies that 
result from this erroneous idea were first revealed by the work of 
MacDonald ('1)'7 but are still haunting the literature. 

9. As a first category consider those systems in which the fluctuations 
are due to an external source. The word "external" is used to indicate that 
(i) the noise source is not influenced by the system itself; (ii) there is a 
parameter which permits one in principle to turn off the noise. 

Examples are: an experiment done in a moving train; propagation of 
electromagnetic waves through the turbulent atmosphere; the growth of a 
specie under the influence of the vicissitudes of the weather. An electric 
circuit with an added noise generator (13) is another example, provided that 
one is sure that the generator is not affected by the currents in the circuit. 
The nonlinear transformer with noisy input is also of this type. 

For systems with external noise one can define an equation (23) as the 
equation of motion of the system when the noise is turned off. As the noise 
is never completely white, it should be described by a stochastic function 
L(t). If g(x) is the response of the system to the added influence, it will 
obey 

Yc = F(x) + g(x)L(t)  (25) 

If it is true that the autocorrelation % of L is much shorter than the other 
time scales occurring, one may replace (25) with its limiting form, which is, 
according to Section 7, the pre-equation (24) together with the Stratonovich 
ru/e. 

The precise conditions for the applicability of the limiting form are 
first that % << ~-,,, where the "mechanical" time scale ~'m is of order x /F(x ) .  
This condition, however, can be eliminated by going to the interaction 
representation, i.e., by taking the integral of the motion of (23) as a new 
variable. The second condition is essential: g% << 1, where g is a number 
typical for the magnitude of g(x). The effect of higher orders of g~-c can 
also be computed, (14) but that is outside the scope of the stochastic 
differential equation (24S). 

10. The second category is formed by systems with internal noise. That 
is, the fluctuations are due to the fact that the system itself consists of 
discrete particles; they are an inherent part of the very mechanism by 
which the state of the system evolves and cannot be turned off by 
manipulating a parameter. Examples: chemical reactions, Brownian parti- 
cles, lasers. 8 

7 See Ref. 12 for a review of the early history. 
8 The distinction between internal and external noise was made in a different connection by 

Mori.(~5) 
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As it is impossible for systems with internal noise to eliminate the 
fluctuations, no precise definition for a deterministic equation (23) exists. 
One therefore must describe the evolution of the entire system as a stochastic 
process x(t).  9 In  those cases in which it is reasonable to assume that x(t) is 
a Markov  process the evolution equation is a master equation having the 
general form 

ae(x, t) 
at = f  {W(xlx')P(x',t)- W(x'lx)P(x,t))dx' (26) 

Here P(x, t) = P(x, t Ix 0, to) is the transition probabili ty between t o and t, 
while W(x[x ' )At  is the same transition probabili ty taken for a time 
interval At which is so small that P does not vary much, but  large enough 
for the Markov  assumpt ion  to hold:  

P(x , t  + Atlx ' , t )  = W(x l x ' )A t  

+ 8 ( x -  x ' ) [ 1 -  A t f  W(x ' lx )dx ' ]  + o(At) 

The master equation determines the entire evolution, including fluctua- 
tions. The explicit form of W(x[x')  reflects the properties of the special 
system considered. In  m a n y  cases, such as chemical reactions, the variable 
x takes only integral values, but  in Brownian motion,  for instance, it has a 
continuous range, l~ 

Yet we know that most  systems also have a deterministic evolution 
equation, e.g., the rate equation for a chemical reaction. How is that  fact 
related to the full stochastic description (26)? The answer is that the 
W(x Ix ')  for these systems involves a parameter  f~ such that for large ~2 the 
fluctuations are relatively small. In  the limit f~ + oc they are negligible and 
the solution of (26) is at all times a delta peak. The position of the peak 
moves according to a deterministic equation of the form (23). The function 
F is therefore only defined in this "macroscopic  limit. ''11 

11. Let us call this zeroth order. The fluctuations are contained in the 
next order of l/f~. A systematic expansion of (26) yields in this first order 
in 1/f~ a perfectly well-defined Fokke r -P lanck  equation for them. The 
I t6 -S t ra tonovich  controversy never enters. This confirms the conclusion 
that it has no physical content.  

9 This was emphasized by Green. (16) 
10 A continuous range is necessary but by no means Sufficient for the process x(t) to be a 

"continuous Markov process" in the technical sense that its sample paths are (with 
probability 1) continuous functions of t. These are the processes for which the master 
equation is a Fokker-Planck equation. They do not occur in nature. (17) 

n In many cases, such as chemical reactions, ~2 is the size of the system and f] ~ oo is the 
thermodynamic limit. However, this is not universally so, e.g., in Brownian motion f~ 
= (m/M). The term "system size expansion" is therefore undesirable. (Is) 
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One may now ask: once the stochastic process x(t) is found by means 
of the ~2 expansion, can it be modeled aposteriori by Eq. (lI) or (1S)? The 
answer is that this can be done as far as the first order in 1/9.  According to 
Section 6, one is free to choose either one, if one does not a priori fix the 
function f. The Langevin approach assumes that f is identical with the 
macroscopic F, but when the noise is internal there is no good reason for 
that. For, the function F is defined only in the limit ~2 ~ ~ ,  while the 
fluctuations belong to the next order, so that f may well differ from it by 
terms of order 1/~. 

The higher order fluctuations cannot be faithfully modeled by an 
equation of the form (lI) or (1S). Of course one can always write an 
equation (25) and consider it as a definition of L(t). It then turns out, 
however, that the stochastic properties of L(t) are not only complicated, 
but also that its correlations depend on the solution x(t) itself. (19) That fact 
is of course fatal for the practical use of the Langevin approach. Even apart 
from that, why insist on forcing a stochastic process into the Langevin 
framework when its stochastic properties have already been computed? j2 

Finally it must be said that a system with internal noise need not have 
a suitable parameter fL And even if it has one, the expansion only works 
when it is stable, more precisely, when the macroscopic equation turns out 
to be globally asymptotically stable in the Lyapunov sense. A fully satisfac- 
tory treatment of fluctuations in unstable systems is not yet available in 
spite of an extensive literature. 

12. Conclusions. The expression (1) is a pre-equation and does not by 
itself determine a solution x(t). It can be turned into a real equation by 
defining an additional interpretation rule. Two different rules lead to two 
different equations (lI) and (lS), defining two different processes. Both are 
mathematically consistent, but the It(3 rule requires a somewhat unexpected 
transformation rule f o r f  when x is subjected to a nonlinear transformation. 
The difference between both interpretations can be compensated by a 
suitable alteration of f. 

An apparent physical difference is suggested by the Langevin ap- 
proach,, because it assumes f to be identical with the F occurring in the 
deterministic equation (23). For systems with external noise this identifica- 
tion can be justified. In that case the argument that physical noise is at best 
only approximately white shows that the Stratonovich rule is the correct 
one. [Of course there is also an equivalent equation (lI) with another f, 
different from F.] 

Systems with internal noise can be treated adequately only by a full 

12 The argument  is often used that the Langevin equation has been so useful; by the same 
argument  one might rebuild one's car in the image of a horse. 
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stochastic description (26), which takes the actual physical cause of the 
fluctuations into account.  W h e n  the system is endowed with a suitable 
parameter  ~2 a macroscopic  equation can be defined. The next order in 1 / g  
gives a unique description of the fluctuations (at least in stable systems), in 
which the I t6 -S t ra tonovich  controversy never occurs. It is possible to 
construct  a posteriori  an equation such as Eq. ( l I )  or Eq. (IS) that 
reproduces the same results. In  higher orders of 1/~2, however, that can no 
longer be done. 13 

The final conclusion is that a physicist cannot  go wrong by regarding 
the It6 interpretation as one of those vagaries of the mathemat ical  mind 
that are of no concern to him. It  merely served to point  out that (1) is not  a 
meaningful  equation, and thereby warn him against glib applications of the 
Langevin approach  to nonlinear equations. Rather,  (1) only occurs in 
systems with external noise as a limiting form of (25). In  that case the 
Stratonovieh rule applies, but  it emerges automatical ly when (25) is solved 
according to the methods developed for general stochastic differential 
equations. (14) F rom a physical point  of view the I t6 -S t ra tonovich  contro- 
versy is moot.  

It  may  be that there exist systems whose fluctuations are neither 
internal nor  external in the sense used above. Such systems would have to 
be discussed separately, but  they are still subject to the general principle 
that mathemat ica l  manipulations mus t  be based on a phys ical  p ic ture  o f  the 
noise source. Projection operator  techniques are purely formal and cannot  
therefore provide a justification for the use of stochastic methods.  
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